All of the models can handle missing data. For performance reasons, the default is not to do any checking for missing data. If, however, you would like for missing data to be handled internally, you can do so by using the missing keyword argument. The default is to do nothing
In [1]: import statsmodels.api as sm
In [2]: data = sm.datasets.longley.load()
In [3]: data.exog = sm.add_constant(data.exog)
# add in some missing data
In [4]: missing_idx = np.array([False] * len(data.endog))
In [5]: missing_idx[[4, 10, 15]] = True
In [6]: data.endog[missing_idx] = np.nan
In [7]: ols_model = sm.OLS(data.endog, data.exog)
In [8]: ols_fit = ols_model.fit()
In [9]: print(ols_fit.params)
[ nan nan nan nan nan nan nan]
This silently fails and all of the model parameters are NaN, which is probably not what you expected. If you are not sure whether or not you have missing data you can use missing = ‘raise’. This will raise a MissingDataError during model instantiation if missing data is present so that you know something was wrong in your input data.
In [10]: ols_model = sm.OLS(data.endog, data.exog, missing='raise')
---------------------------------------------------------------------------
MissingDataError Traceback (most recent call last)
<ipython-input-10-6b74d5399bc3> in <module>()
----> 1 ols_model = sm.OLS(data.endog, data.exog, missing='raise')
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/regression/linear_model.pyc in __init__(self, endog, exog, missing, hasconst, **kwargs)
629 **kwargs):
630 super(OLS, self).__init__(endog, exog, missing=missing,
--> 631 hasconst=hasconst, **kwargs)
632 if "weights" in self._init_keys:
633 self._init_keys.remove("weights")
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/regression/linear_model.pyc in __init__(self, endog, exog, weights, missing, hasconst, **kwargs)
524 weights = weights.squeeze()
525 super(WLS, self).__init__(endog, exog, missing=missing,
--> 526 weights=weights, hasconst=hasconst, **kwargs)
527 nobs = self.exog.shape[0]
528 weights = self.weights
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/regression/linear_model.pyc in __init__(self, endog, exog, **kwargs)
93 """
94 def __init__(self, endog, exog, **kwargs):
---> 95 super(RegressionModel, self).__init__(endog, exog, **kwargs)
96 self._data_attr.extend(['pinv_wexog', 'wendog', 'wexog', 'weights'])
97
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/base/model.pyc in __init__(self, endog, exog, **kwargs)
210
211 def __init__(self, endog, exog=None, **kwargs):
--> 212 super(LikelihoodModel, self).__init__(endog, exog, **kwargs)
213 self.initialize()
214
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/base/model.pyc in __init__(self, endog, exog, **kwargs)
61 hasconst = kwargs.pop('hasconst', None)
62 self.data = self._handle_data(endog, exog, missing, hasconst,
---> 63 **kwargs)
64 self.k_constant = self.data.k_constant
65 self.exog = self.data.exog
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/base/model.pyc in _handle_data(self, endog, exog, missing, hasconst, **kwargs)
86
87 def _handle_data(self, endog, exog, missing, hasconst, **kwargs):
---> 88 data = handle_data(endog, exog, missing, hasconst, **kwargs)
89 # kwargs arrays could have changed, easier to just attach here
90 for key in kwargs:
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/base/data.pyc in handle_data(endog, exog, missing, hasconst, **kwargs)
628 klass = handle_data_class_factory(endog, exog)
629 return klass(endog, exog=exog, missing=missing, hasconst=hasconst,
--> 630 **kwargs)
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/base/data.pyc in __init__(self, endog, exog, missing, hasconst, **kwargs)
63 if missing != 'none':
64 arrays, nan_idx = self.handle_missing(endog, exog, missing,
---> 65 **kwargs)
66 self.missing_row_idx = nan_idx
67 self.__dict__.update(arrays) # attach all the data arrays
/build/statsmodels-0.8.0~rc1+git43-g1ac3f11/debian/python-statsmodels/usr/lib/python2.7/dist-packages/statsmodels/base/data.pyc in handle_missing(cls, endog, exog, missing, **kwargs)
276
277 elif missing == 'raise':
--> 278 raise MissingDataError("NaNs were encountered in the data")
279
280 elif missing == 'drop':
MissingDataError: NaNs were encountered in the data
If you want statsmodels to handle the missing data by dropping the observations, use missing = ‘drop’.
In [11]: ols_model = sm.OLS(data.endog, data.exog, missing='drop')
We are considering adding a configuration framework so that you can set the option with a global setting.