A results class for Logit Model
Parameters: | model : A DiscreteModel instance params : array-like
hessian : array-like
scale : float
|
---|---|
Returns: | *Attributes* : aic : float
bic : float
bse : array
df_resid : float
df_model : float
fitted_values : array
llf : float
llnull : float
llr : float
llr_pvalue : float
prsquared : float
|
Methods
aic() | |
bic() | |
bse() | |
conf_int([alpha, cols, method]) | Returns the confidence interval of the fitted parameters. |
cov_params([r_matrix, column, scale, cov_p, ...]) | Returns the variance/covariance matrix. |
f_test(r_matrix[, cov_p, scale, invcov]) | Compute the F-test for a joint linear hypothesis. |
fittedvalues() | |
get_margeff([at, method, atexog, dummy, count]) | Get marginal effects of the fitted model. |
initialize(model, params, **kwd) | |
llf() | |
llnull() | |
llr() | |
llr_pvalue() | |
load(fname) | load a pickle, (class method) |
normalized_cov_params() | |
pred_table([threshold]) | Prediction table |
predict([exog, transform]) | Call self.model.predict with self.params as the first argument. |
prsquared() | |
pvalues() | |
remove_data() | remove data arrays, all nobs arrays from result and model |
resid_dev() | Deviance residuals |
resid_generalized() | Generalized residuals |
resid_pearson() | Pearson residuals |
resid_response() | The response residuals |
save(fname[, remove_data]) | save a pickle of this instance |
summary([yname, xname, title, alpha, yname_list]) | Summarize the Regression Results |
summary2([yname, xname, title, alpha, ...]) | Experimental function to summarize regression results |
t_test(r_matrix[, cov_p, scale, use_t]) | Compute a t-test for a each linear hypothesis of the form Rb = q |
tvalues() | Return the t-statistic for a given parameter estimate. |
wald_test(r_matrix[, cov_p, scale, invcov, ...]) | Compute a Wald-test for a joint linear hypothesis. |
wald_test_terms([skip_single, ...]) | Compute a sequence of Wald tests for terms over multiple columns |
Methods
aic() | |
bic() | |
bse() | |
conf_int([alpha, cols, method]) | Returns the confidence interval of the fitted parameters. |
cov_params([r_matrix, column, scale, cov_p, ...]) | Returns the variance/covariance matrix. |
f_test(r_matrix[, cov_p, scale, invcov]) | Compute the F-test for a joint linear hypothesis. |
fittedvalues() | |
get_margeff([at, method, atexog, dummy, count]) | Get marginal effects of the fitted model. |
initialize(model, params, **kwd) | |
llf() | |
llnull() | |
llr() | |
llr_pvalue() | |
load(fname) | load a pickle, (class method) |
normalized_cov_params() | |
pred_table([threshold]) | Prediction table |
predict([exog, transform]) | Call self.model.predict with self.params as the first argument. |
prsquared() | |
pvalues() | |
remove_data() | remove data arrays, all nobs arrays from result and model |
resid_dev() | Deviance residuals |
resid_generalized() | Generalized residuals |
resid_pearson() | Pearson residuals |
resid_response() | The response residuals |
save(fname[, remove_data]) | save a pickle of this instance |
summary([yname, xname, title, alpha, yname_list]) | Summarize the Regression Results |
summary2([yname, xname, title, alpha, ...]) | Experimental function to summarize regression results |
t_test(r_matrix[, cov_p, scale, use_t]) | Compute a t-test for a each linear hypothesis of the form Rb = q |
tvalues() | Return the t-statistic for a given parameter estimate. |
wald_test(r_matrix[, cov_p, scale, invcov, ...]) | Compute a Wald-test for a joint linear hypothesis. |
wald_test_terms([skip_single, ...]) | Compute a sequence of Wald tests for terms over multiple columns |
Attributes
use_t | bool(x) -> bool |