Logo

statsmodels.stats.weightstats.DescrStatsW

class statsmodels.stats.weightstats.DescrStatsW(data, weights=None, ddof=0)[source]

descriptive statistics with weights for simple case

assumes that the data is 1d or 2d with (nobs,nvars) ovservations in rows, variables in columns, and that the same weight apply to each column.

If degrees of freedom correction is used than weights should add up to the number of observations. ttest also assumes that the sum of weights corresponds to the sample size.

This is essentially the same as replicating each observations by it’s weight, if the weights are integers.

Examples

Note: I don’t know the seed for the following, so the numbers will differ

>>> x1_2d = 1.0 + np.random.randn(20, 3)
>>> w1 = np.random.randint(1,4, 20)
>>> d1 = DescrStatsW(x1_2d, weights=w1)
>>> d1.mean
array([ 1.42739844,  1.23174284,  1.083753  ])
>>> d1.var
array([ 0.94855633,  0.52074626,  1.12309325])
>>> d1.std_mean
array([ 0.14682676,  0.10878944,  0.15976497])
>>> tstat, pval, df = d1.ttest_mean(0)
>>> tstat; pval; df
array([  9.72165021,  11.32226471,   6.78342055])
array([  1.58414212e-12,   1.26536887e-14,   2.37623126e-08])
44.0
>>> tstat, pval, df = d1.ttest_mean([0, 1, 1])
>>> tstat; pval; df
array([ 9.72165021,  2.13019609,  0.52422632])
array([  1.58414212e-12,   3.87842808e-02,   6.02752170e-01])
44.0

#if weithts are integers, then asrepeats can be used

>>> x1r = d1.asrepeats()
>>> x1r.shape
...
>>> stats.ttest_1samp(x1r, [0, 1, 1])
...

Methods

asrepeats() get array that has repeats given by floor(weights)
confint_mean([alpha])
std_ddof([ddof])
std_var()
ttest_mean(value[, alternative]) ttest of Null hypothesis that mean is equal to value.
ttest_meandiff(other)
var_ddof([ddof])

Previous topic

statsmodels.stats.weightstats.CompareMeans.ttest_ind

Next topic

statsmodels.stats.weightstats.DescrStatsW.asrepeats

This Page