SensitivityAnalyzer that reports the weights SMLR trained on a given Dataset.
By default SMLR provides multiple weights per feature (one per label in training dataset). By default, all weights are combined into a single sensitivity value. Please, see the FeaturewiseMeasure constructor arguments how to custmize this behavior.
Notes
Available conditional attributes:
(Conditional attributes enabled by default suffixed with +)
Methods
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Initialize the analyzer with the classifier it shall use.
Parameters : | clf : Classifier
force_train : bool
enable_ca : None or list of str
disable_ca : None or list of str
null_dist : instance of distribution estimator
auto_train : bool
space : str, optional
pass_attr : str, list of str|tuple, optional
postproc : Node instance, optional
descr : str
|
---|
Methods
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |